Structures algébriques dynamiques, espaces topologiques sans points et programme de Hilbert

نویسنده

  • Henri Lombardi
چکیده

Dynamical algebraic structures, pointfree topological spaces and Hilbert’s program A possible relevant meaning of Hilbert’s program is the following one : “give a constructive semantic for classical mathematics”. More precisely, give a systematic interpretation of classical abstract proofs (that use Third Excluded Middle and Choice) about abstract objects, as constructive proofs about constructive versions of these objects. If this program is fulfilled we are able “at the end of the tale” to extract constructive proofs of concrete results from classical abstract proofs of these results. Dynamical algebraic structures or (this is more ore less the same thing) geometric theories seem to be a good tool for doing this job. In this setting, classical abstract objects are interpreted through incomplete concrete specifications of these objects. The structure of axioms in geometric theories give rise in a natural way to distributive lattices and pointfree topological spaces. Abstract objects correspond to classical points of these pointfree spaces. We shall insist on the Zariski spectrum of distributive lattices and commutative rings and give a constructive interpretation of the Krull dimension. We underline the fact that many abstract objects in classical mathematics can be viewed as points of spectral spaces corresponding to distributive lattices whose definition is concrete and natural. Two important facts are to be stressed. First, abstract proofs about points of these pointfree spaces can very often (always ?) be reread as constructive proofs about constructible subsets of these spaces. Second, function spaces on these pointfree spaces are often explicitely used in elegant abstract theories. The structure of these function spaces is fully constructive : indeed by compactness theorem, “all is finite”. The constructive rereading of the abstract proofs is in this setting is nothing but the simple constatation that abstract proofs use correctly (geometric) axioms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regular Closure Operators and Compactness

Résumé. Une légère modification de la notion de compacité relativement à un opérateur de fermeture permet d’étendre à la catégorie TOP des espaces topologiques divers résultats sur les opérateurs de fermeture réguliers obtenus pour la catégorie AB des groups abéliens. Ainsi les épimorphismes dans les sous-catégories des objets compacts ou compactsséparés pour un opérateur de fermeture régulier ...

متن کامل

On ∗-autonomous categories of topological vector spaces

We show that there are two (isomorphic) full subcategories of the category of locally convex topological vector spaces—the weakly topologized spaces and those with the Mackey topology—that form ∗-autonomous categories. RÉSUMÉ. On montre qu’il y a deux sous-catégories (isomorphes) pleines de la catégorie des espaces vectoriels topologiques localement convexes—les espaces munis de la topologie fa...

متن کامل

Analyse topologique et géométrique de maillages 3D pour l’extraction de squelette

Résumé Cet article décrit une méthode unifiée pour la construction et la simplification de graphes de Reeb ansi que pour l’approximation de constrictions sur les surfaces triangulées. L’idée clé de notre algorithme est que les contours discrets – courbes portées par les arêtes de la triangulation et approximant les contours continus d’une fonction d’application – encodent à la fois les propriét...

متن کامل

On the Partial Algebraicity of Holomorphic Mappings between Two Real Algebraic Sets in Complex Euclidean Spaces of Arbitrary Dimension

The rigidity properties of the local invariants of real algebraic CauchyRiemann structures imposes upon holomorphic mappings some global rational properties (Poincaré 1907) or more generally algebraic ones (Webster 1977). Our principal goal will be to unify the classical or recent results in the subject, building on a study of the transcendence degree, to discuss also the usual assumption of mi...

متن کامل

Möbius inversion formula for monoids with zero

The Möbius inversion formula, introduced during the 19th century in number theory, was generalized to a wide class of monoids called locally finite such as the free partially commutative, plactic and hypoplactic monoids for instance. In this contribution are developed and used some topological and algebraic notions for monoids with zero, similar to ordinary objects such as the (total) algebra o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 137  شماره 

صفحات  -

تاریخ انتشار 2006